

Owner:ZINo.:MIssued:22Valid to:23

MD-23103-EN 21-07-2023 21-07-2028

3rd party verified

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804

Owner of declaration

ZURFACE A/S Rabækkevej 2 3700 Rønne, Denmark VAT no. DK-34903093

Programme

EPD Danmark www.epddanmark.dk

□ Industry EPD ⊠ Product EPD

Declared product(s)

Granite/gneiss with split finish.

Number of declared datasets/product variations: 1.

Production site

ZURFACE A/S Almegårdsvej 16 3700 Rønne, Denmark.

The declared product is manufactured using certified green electricity.

Product(s) use

Zurface produces granite/gneiss products for pavements, facades, floors, and interiors. Granite/gneiss products with a split finish are most often used for outdoor applications. Common applications include cobblestones, setts, and kerbs.

Declared/ functional unit

1 ton of granite/gneiss.

Year of production site data 2021.

EPD version 1st version.

Kepddanmark

Issued: 21-07-2023

Valid to: 21-07-2028

Basis of calculation

This EPD is developed in accordance with the European standard EN 15804+A2.

Comparability

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

Use

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

EPD type

Cradle-to-gate with modules C1-C4 and D
Cradle-to-gate with options, modules C1-C4 and D
Cradle-to-grave and module D
Cradle-to-gate
Cradle-to-gate with options

CEN standard EN 15804 serves as the core $\ensuremath{\mathsf{PCR}}$

Independent verification of the declaration and data, according to EN ISO 14025

⊠ external

internal

Third party verifier:

Mirko Miseljic

enfer Martha Katrine Sørensen

EPD Danmark

Life	ife cycle stages and modules (MND = module not declared)															
	Produc	t	Constr pro	ruction cess		Use					End of life				Beyond the system boundary	
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Re-use, recovery and recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
x	X	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	Х	X	Х	X	x

Product information

Product description

The main product components are shown in the table below.

Material	Weight-% of declared product
Granite/gneiss	100%

Product packaging

The composition of the sales- and transport packaging of the product is shown in the table below.

Material	Weight-% of packaging
Big bags	9%
Wooden pallets	91%

Representativity

This declaration, including data collection and the modeled foreground system including results, represents the production of 1 ton of granite/gneiss on the production site located in Rønne, Denmark. Product specific data are based on average values collected in the year 2021. Background data are based on the LCA for Experts database version 2023.1 and EcoInvent 3.8. The background data are less than 10 years old. Generally, the used background datasets are of high quality, and the majority of the datasets are only a couple of years old.

Hazardous substances

The declared products does not contain substances listed on the "Candidate List of Substances of Very High Concern for authorisation".

(http://echa.europa.eu/candidate-list-table)

Essential characteristics

For outdoor application, the granite/gneiss products comply with the following standards: DS/EN 1136, DS/EN 1341, DS/EN 1342, and DS/EN 1343.

For indoor application, the granite/gneiss products comply with the following standards: DS/EN 12057, and DS/EN 12058.

Further technical information can be obtained by contacting the manufacturer or on the manufacturer's website: <u>http://www.zurface.dk/</u>

Reference Service Life (RSL)

The reference service life (RSL) of the declared product is +100 years. (Aagaard et al. 2013)

Any demolition/deconstruction of the declared product will most often be due to the surrounding area or remaining construction, for example during renovation.

Picture of product(s)

The declared product is manufactured from the following granites *Blå Rønne, Moseløkke*, and *Helletsbakke*, and the gneiss *Paradis*, which are quarried from the four remaining Danish quarries on Bornholm. The materials can be seen on the pictures below.

Moseløkke

Paradis

LCA background

Declared unit

The LCI and LCIA results in this EPD relates to environmental impacts caused by the production and end-of-life of 1 ton of granite/gneiss.

Name	Value	Unit
Declared unit	1	ton
Density	2630-2750	kg/m ³
Conversion factor to 1 kg.	0.001	-

Functional unit

Not defined.

PCR

This EPD is developed according to the core rules for the product category of construction products in EN 15804+A2:2019.

Guarantee of Origin – certificates

Foreground system:

The product is produced using electricity covered by "Guarantee of Origin" certificates and, therefore, modelled using electricity from wind power. Remaining consumption of electricity is modelled using residual grid mix. No comfort heat is consumed in the production area.

Background system:

Other processes upstream and downstream from the production is modelled with processes from the LCA for Experts background database that is based on average data.

Key assumptions and estimates

It is assumed that the type of granite/gneiss has no significant influence on the production itself. Therefore, the LCA results for the declared product are both valid for the granites *Blå Rønne, Moseløkke* and *Helletsbakke*, as well as the gneiss *Paradis*.

Flow diagram

The flow diagram below presents the main processes included in the life cycle of the declared product:

System boundary

This EPD is based on a cradle-to-gate LCA with modules C1-C4 and D, in which 100 weight-% has been accounted for.

The general rules for the exclusion of inputs and outputs follows the requirements in EN 15804, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

In module A1, allocation of energy, auxiliary materials, and production waste is based on economic values. In module A3, allocation is based on mass, i.e. per kg of product manufactured at the production site in Rønne, Denmark. In accordance with EN 15804+A2:2019, the allocation procedures have been chosen based on the differences in revenue from the co-products in module A1 and A3, respectively.

Product stage (A1-A3) includes:

- A1 Extraction and processing of raw materials
- A2 Transport to the production site
- A3 Manufacturing processes

The product stage comprises the acquisition of all raw materials, products and energy, transport to the production site, packaging and waste processing up to the "end-of-waste" state or final disposal. The LCA results are declared in aggregated form for the product stage, which means, that the sub-modules A1, A2 and A3 are declared as one module A1-A3.

Extraction of raw materials (A1+A2):

Zurface has the exclusive right to quarry and process the granite and gneiss in the four remaining Danish quarries on Bornholm (A1). The quarrying of granite/gneiss results in granite/gneiss blocks, which subsequently are transported to the production site for further processing (A2).

Surface finishing (A3):

The surface finishing takes place in one of the four remaining quarries on Bornholm. The split finish

is applied mechanically, and the granite/gneiss is adjusted in size and dimension, depending on the desired granite/gneiss product. The split finish leaves the surface rocky and rustic.

Finally, the declared product is packaged and transported to Zurface's sales office and warehouse in Copenhagen, Denmark.

End of Life (C1-C4) includes:

C1 – Deconstruction

- C2 Transport to waste processing
- C3 Waste processing
- C4 Disposal

Two scenarios have been included in the end-oflife stage. One assumes that 100% of the declared product is collected for recycling, and one assumes that 100% is collected and prepared for reuse at Zurface's own facilities in Copenhagen, Horsens, or Randers.

Both scenarios include excavation (C1) and transport from the construction site to the waste processing facility (C2). A distance of 100 km is assumed for the reuse scenario, while 50 km is assumed for the recycling scenario.

In the reuse scenario, the granite/gneiss products are sifted, removing impurities such as sand and soil (C3). In the recycling scenario, the granite/gneiss products are crushed, producing recycled aggregates (C3).

None of these 100% scenarios are likely, but a mix of the two scenarios is considered plausible.

Re-use, recovery and recycling potential (D) includes:

In the reuse scenario, approximately 10% of the output material from the sifting requires further processing, including removal of asphalt and flaming of the surface. This process takes place beyond the system boundary and thus modelled in module D.

Both scenarios include potential benefits from avoided extraction and production of primary materials.

LCA results

	ENVIRONMENTAL IMPACTS PER DECLARED UNIT (1 TON)												
							Scer	nario					
Parameter	Unit	A1-A3		-	Reuse	-	-	Recycling					
			C1	C2	C3	C4	D	C1	C2	C3	C4	D	
GWP-total	[kg CO ₂ eq.]	1.33E+02	2.69E-01	9.35E+00	2.69E-01	0.00E+00	-1.35E+02	2.69E-01	4.25E+00	2.60E+00	0.00E+00	-1.90E+00	
GWP-fossil	[kg CO ₂ eq.]	1.31E+02	2.66E-01	9.24E+00	2.66E-01	0.00E+00	-1.33E+02	2.66E-01	4.20E+00	2.59E+00	0.00E+00	-1.94E+00	
GWP-biogenic	[kg CO ₂ eq.]	4.33E-01	1.04E-03	2.73E-02	1.04E-03	0.00E+00	-4.82E-01	1.04E-03	1.24E-02	3.96E-04	0.00E+00	4.72E-02	
GWP-luluc	[kg CO₂ eq.]	1.07E+00	2.45E-03	8.57E-02	2.45E-03	0.00E+00	-1.07E+00	2.45E-03	3.89E-02	1.25E-02	0.00E+00	-8.29E-03	
ODP	[kg CFC 11 eq.]	1.50E-07	3.44E-14	1.20E-12	3.44E-14	0.00E+00	-1.52E-07	3.44E-14	5.47E-13	7.79E-12	0.00E+00	-1.25E-11	
AP	[mol H ⁺ eq.]	1.94E+00	3.66E-03	1.36E-02	3.66E-03	0.00E+00	-1.97E+00	3.66E-03	6.20E-03	1.30E-02	0.00E+00	-9.90E-03	
EP-freshwater	[kg P eq.]	1.04E-03	9.66E-07	3.38E-05	9.66E-07	0.00E+00	-1.10E-03	9.66E-07	1.54E-05	6.74E-06	0.00E+00	-9.72E-06	
EP-marine	[kg N eq.]	8.38E-01	1.66E-03	4.95E-03	1.66E-03	0.00E+00	-8.53E-01	1.66E-03	2.25E-03	6.06E-03	0.00E+00	-3.49E-03	
EP-terrestrial	[mol N eq.]	9.72E+00	1.82E-02	5.86E-02	1.82E-02	0.00E+00	-9.88E+00	1.82E-02	2.66E-02	6.68E-02	0.00E+00	-3.86E-02	
POCP	[kg NMVOC eq.]	2.47E+00	4.95E-03	1.19E-02	4.95E-03	0.00E+00	-2.52E+00	4.95E-03	5.43E-03	1.63E-02	0.00E+00	-9.50E-03	
ADPm ¹	[kg Sb eq.]	8.13E-05	1.74E-08	6.09E-07	1.74E-08	0.00E+00	-8.44E-05	1.74E-08	2.77E-07	2.77E-06	0.00E+00	-2.01E-07	
ADPf ¹	[MJ]	1.76E+03	3.60E+00	1.26E+02	3.60E+00	0.00E+00	-1.77E+03	3.60E+00	5.73E+01	4.98E+01	0.00E+00	-3.01E+01	
WDP ¹	[m ³ world eq. deprived]	5.44E+00	3.19E-03	1.12E-01	3.19E-03	0.00E+00	-7.87E+00	3.19E-03	5.08E-02	4.52E-01	0.00E+00	-2.06E-01	
Caption	GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidifcation; EP-freshwater = Eutrophication - aquatic freshwater; EP-marine = Eutrophication - aquatic marine; EP-terrestrial = Eutrophication - terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential - minerals and metals; ADPf = Abiotic Depletion Potential - fossil fuels; WDP = water use The numbers are declared in scientific notation, fx 1,95E+02. This number can also be written as: 1,95*10 ² or 195, while 1,12E-11 is the same as 1,12*10 ⁻¹¹ or 0,0000000000112												
Disclaimer	¹ The results	of this envir	onmental inc	licator shall b	e used with	care as the u the inc	Incertainties of licator.	on these res	ults are high	or as there is	limited expe	rienced with	

	ADDITIONAL ENVIRONMENTAL IMPACTS PER DECLARED UNIT (1 TON)													
			Scenario											
Parameter	Unit	A1-A3			Reuse					Recycling				
			C1	C2	C3	C4	D	C1	C2	C3	C4	D		
PM	[Disease incidence]	8.22E-05	1.93E-07	1.17E-07	1.93E-07	0.00E+00	-8.37E-05	1.93E-07	5.34E-08	2.51E-07	0.00E+00	-5.80E-07		
IRP ²	[kBq U235 eq.]	7.71E-01	1.01E-03	3.53E-02	1.01E-03	0.00E+00	-8.03E-01	1.01E-03	1.60E-02	4.29E-02	0.00E+00	-3.39E-01		
ETP-fw ¹	[CTUe]	2.05E+04	2.56E+00	8.95E+01	2.56E+00	0.00E+00	-2.07E+04	2.56E+00	4.07E+01	3.55E+01	0.00E+00	-1.67E+01		
HTP-c ¹	[CTUh]	4.95E-08	5.23E-11	1.83E-09	5.23E-11	0.00E+00	-5.20E-08	5.23E-11	8.32E-10	7.83E-10	0.00E+00	-1.29E-09		
HTP-nc ¹	[CTUh]	1.98E-06	4.14E-09	9.76E-08	4.14E-09	0.00E+00	-2.06E-06	4.14E-09	4.44E-08	3.92E-08	0.00E+00	-1.26E-07		
SQP ¹	-	9.80E+02	1.50E+00	5.26E+01	1.50E+00	0.00E+00	-1.21E+03	1.50E+00	2.39E+01	1.26E+01	0.00E+00	-1.02E+01		
	PM = Par	rticulate Matt	er emissions; effects	; IRP = Ioniz :: HTP-nc = I	ing radiation Juman toxici	– human hea ly – non can	alth; ETP-fw : cer effects: Se	= Eco toxicity OP = Soil Ou	/ – freshwate	er; HTP-c = H sionless)	luman toxicit	y – cancer		
Caption	The nun	nbers are de	clared in scie	ntific notation	n, fx 1,95E+0 1,1	2. This numb 2*10 ⁻¹¹ or 0.	er can also b 0000000000	be written as: 112.	1,95*10 ² or	195, while 1,	12E-11 is the	e same as		
¹ The results of this environmental indicator shall be used with care as the uncertainties on these results are high or as there is limited exper								erienced with						
		the indicator.												
Disclaimers	² This in	npact categor	y deals main	ly with the e	ventual impa	ct of low dos	e ionizing rac	liation on hu	man health c	of the nuclear	fuel cycle. It	does not		
	consider	effects due	to possible n	uclear accide	nts, occupati	onal exposur	e nor due to	radioactive w	aste disposa	l in undergro	ound facilities	. Potential		
		ionizing	radiation from	n the soil, fro	om radon and	a from some	construction	materials is a	also not mea	surea by this	indicator.			

	RESOURCE USE PER DECLARED UNIT (1 TON)														
				Scenario											
Parameter	Unit	A1-A3	Reuse						Recycling						
			C1	C2	C3	C4	D	C1	C2	C3	C4	D			
PERE	[MJ]	8.43E+02	2.62E-01	9.17E+00	2.62E-01	0.00E+00	-9.73E+02	2.62E-01	4.17E+00	5.48E+00	0.00E+00	-9.76E+00			
PERM	[MJ]	9.55E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-1.18E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
PERT	[MJ]	9.38E+02	2.62E-01	9.17E+00	2.62E-01	0.00E+00	-1.09E+03	2.62E-01	4.17E+00	5.48E+00	0.00E+00	-9.76E+00			
PENRE	[MJ]	1.75E+03	3.61E+00	1.26E+02	3.61E+00	0.00E+00	-1.75E+03	3.61E+00	5.75E+01	4.98E+01	0.00E+00	-3.01E+01			
PENRM	[MJ]	2.15E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.09E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
PENRT	[MJ]	1.77E+03	3.61E+00	1.26E+02	3.61E+00	0.00E+00	-1.77E+03	3.61E+00	5.75E+01	4.98E+01	0.00E+00	-3.01E+01			
SM	[kg]	5.23E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-6.36E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
FW	[m³]	2.25E-01	2.87E-04	1.00E-02	2.87E-04	0.00E+00	-2.83E-01	2.87E-04	4.56E-03	1.32E-02	0.00E+00	-8.93E-03			
Caption	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Net use of fresh water The numbers are declared in scientific notation, fx 195E+102. This number can also be written as: 195 ¹¹⁰² or 195, while 1.12E-11 is the same as														
					1	,12*10 ⁻¹¹ or	0,000000000	0112.	,						

	WASTE CATEGORIES AND OUTPUT FLOWS PER DECLARED UNIT (1 TON)															
				Scenario												
Parameter	Unit	A1-A3	Reuse						Recycling							
			C1	C2	C3	C4	D	C1	C2	C3	C4	D				
HWD	[kg]	-5.85E-07	1.12E-11	3.92E-10	1.12E-11	0.00E+00	6.34E-07	1.12E-11	1.78E-10	-5.33E-10	0.00E+00	7.35E-10				
NHWD	[kg]	7.65E-01	5.51E-04	1.93E-02	5.51E-04	0.00E+00	-1.39E+01	5.51E-04	8.76E-03	1.40E-02	0.00E+00	-4.04E+01				
RWD	[kg]	4.55E-03	6.76E-06	2.37E-04	6.76E-06	0.00E+00	-4.75E-03	6.76E-06	1.08E-04	4.08E-04	0.00E+00	-2.07E-03				
CRU	[kg]	0.00E+00	0.00E+00	0.00E+00	8.55E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
MFR	[kg]	7.00E+01	0.00E+00	0.00E+00	9.50E+01	0.00E+00	-1.27E+02	0.00E+00	0.00E+00	9.70E+02	0.00E+00	0.00E+00				
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
EEE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
EET	[MJ]	4.17E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-4.22E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Compor use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported ther								nents for re- mal energy								
	The n	umbers are c	leclared in sc	ientific notatio	on, fx 1,95E+ 1,	02. This num 12*10 ⁻¹¹ or (ber can also 0,000000000	be written as 0112.	: 1,95*10 ² or	195, while 1,	12E-11 is the	e same as				

	BIOGENIC CARBON CONTENT PER DECLARED UNIT (1 TON)										
Parameter	Unit	At the factory gate									
Biogenic carbon content in product	[kg C]	0.00E+00									
Biogenic carbon centent in accompanying packagaing	[kg C]	2.18E+00									
Note 1 kg biogenic carbon is equivalent to 44/12 kg of CO2											

Additional information

LCA interpretation

The tables below show the processes contributing the most to the specific impact categories, and how much they contribute to the given environmental impact category.

The contributions (in percentages) are expressed relative to the total environmental impacts, which is a result of both impacts (positive values) and savings from processes such as energy recovery (negative values). Module D has been excluded from this interpretation.

Maximum contribution to environmental impact categories. Scenario: Reuse.

ENVIRONMENTAL IMPACTS											
Impact Category	Unit	Total	Maximum contribution on category	Percentage of category	Process						
Climate Change (total)	kg CO ₂ eq.	1.42E+02	9.61E+01	67%	Combustion of diesel (A1)						
Climate Change (fossil)	kg CO₂ eq.	1.41E+02	8.95E+01	64%	Combustion of diesel (A1)						
Climate Change (biogenic C - release)	kg CO₂ eq.	8.11E+00	6.58E+00	81%	Combustion of diesel (A1)						
Climate Change (biogenic C - uptake)	kg CO₂ eq.	-7.65E+00	-6.17E+00	81%	Production of diesel (A1)						
Climate Change (land use change)	kg CO₂ eq.	1.16E+00	9.76E-01	84%	Production of diesel (A1)						
Ozone depletion	kg CFC-11 eq.	1.50E-07	1.47E-07	98%	Blasting (A1)						
Acidification terrestrial and freshwater	Mole of H ⁺ eq.	1.96E+00	1.38E+00	70%	Combustion of diesel (A1)						
Eutrophication freshwater	kg P eq.	1.07E-03	6.12E-04	57%	Blasting (A1)						
Eutrophication marine	kg N eq.	8.46E-01	6.42E-01	76%	Combustion of diesel (A1)						
Eutrophication terrestrial	Mole of N eq.	9.82E+00	7.03E+00	72%	Combustion of diesel (A1)						
Photochemical ozone formation - human health	kg NMVOC eq.	2.50E+00	1.91E+00	77%	Combustion of diesel (A1)						
Resource use, mineral and metals	kg Sb eq.	8.20E-05	4.01E-05	49%	Blasting (A1)						
Resource use, energy carriers	МЈ	1.89E+03	1.43E+03	76%	Production of diesel (A1)						
Water scarcity	m ³ world equiv.	5.56E+00	1.51E+00	27%	Water (A1)						

Maximum contribution to environmental impact categories. Scenario: Recycling.

ENVIRONMENTAL IMPACTS										
Impact Category	Unit	Total	Maximum contribution on category	Percentage of category	Process					
Climate Change (total)	kg CO ₂ eq.	1.40E+02	9.61E+01	69%	Combustion of diesel (A1)					
Climate Change (fossil)	kg CO₂ eq.	1.38E+02	8.95E+01	65%	Combustion of diesel (A1)					
Climate Change (biogenic C - release)	kg CO₂ eq.	8.10E+00	6.58E+00	81%	Combustion of diesel (A1)					
Climate Change (biogenic C - uptake)	kg CO₂ eq.	-7.65E+00	-6.17E+00	81%	Production of diesel (A1)					
Climate Change (land use change)	kg CO₂ eq.	1.12E+00	9.76E-01	87%	Production of diesel (A1)					
Ozone depletion	kg CFC-11 eq.	1.50E-07	1.47E-07	98%	Blasting (A1)					
Acidification terrestrial and freshwater	Mole of H ⁺ eq.	1.96E+00	1.38E+00	70%	Combustion of diesel (A1)					
Eutrophication freshwater	kg P eq.	1.06E-03	6.12E-04	58%	Blasting (A1)					
Eutrophication marine	kg N eq.	8.48E-01	6.42E-01	76%	Combustion of diesel (A1)					
Eutrophication terrestrial	Mole of N eq.	9.83E+00	7.03E+00	72%	Combustion of diesel (A1)					
Photochemical ozone formation - human health	kg NMVOC eq.	2.50E+00	1.91E+00	76%	Combustion of diesel (A1)					
Resource use, mineral and metals	kg Sb eq.	8.44E-05	4.01E-05	48%	Blasting (A1)					
Resource use, energy carriers	МЈ	1.87E+03	1.43E+03	77%	Production of diesel (A1)					
Water scarcity	m ³ world equiv.	5.95E+00	1.51E+00	25%	Water (A1)					

Technical information on scenarios

Reference service life

RSL information	Unit				
Reference service Life	+100 years				
Declared product properties					
Design application parameters					
Assumed quality of work	Technical specifications and guidance can be obtained from the				
Outdoor environment	company's website <u>http://www.zurface.dk/</u> or from direct contact to Zurface at +45 7010 1066 or info@zurface.dk				
Indoor environment					
Usage conditions					
Maintenance					

The declared product is particularly long-lasting, being present after several hundred years of use. The RSL of the declared product varies depending on the intended application (Aagaard et al. 2013). Hence, the RSL is determined to +100 years.

End of life (C1-C4)

Scenario information	Reuse	Recycling	Unit
Collected separately	1	1	ton
Collected with mixed waste			ton
For reuse	1		ton
For recycling		1	ton
For energy recovery			ton
For final disposal			ton
Assumptions for scenario development	100% is assumed collected for reuse	100% is assumed collected for recycling	As appropriate

Re-use, recovery and recycling potential (D)

Credits for avoided extraction and production of primary materials beyond the system boundary (D).

Scenario information/Materiel	Reuse	Recycling	Unit
Credit for avoided primary materials	950	970	kg

Indoor air

The EPD does not give information on release of dangerous substances to indoor air because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A2 chapter 7.4.1.

Soil and water

The EPD does not give information on release of dangerous substances to soil and water because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A2 chapter 7.4.2.

References

Publisher	www.epddanmark.dk
Programme operator	Danish Technological Institute Sustainable Construction Gregersensvej 1 DK-2630 Taastrup www.teknologisk.dk
LCA-practitioner	Danish Technological Institute Sustainable Construction Gregersensvej 1 DK-2630 Taastrup www.teknologisk.dk
LCA software /background data	LCA for Experts version 10.7, Database 2023.1 <u>www.gabi-software.com</u> EcoInvent version 3.8 <u>www.ecoinvent.org</u>
3 rd party verifier	Mirko Miseljic FORCE Technology Park Allé 345 DK-2605 Brøndby <u>www.forcetechnology.com</u>

Aagaard, N-J, Brandt, E, Aggerholm, S & Haugbølle, K 2013, Levetider af bygningsdele ved vurdering af bæredygtighed og totaløkonomi. SBI, nr. 30, bind 2013, SBI forlag. http://www.sbi.dk/byggeteknik/kvalitet/levetider-af-bygningsdele-ved-vurdering-af-baeredygtighed-og-totalokonomi-1/sbi-2013-30-rapport/at_download/file

General programme instructions

General Programme Instructions, version 2.0, spring 2020 www.epddanmark.dk

EN 15804

DS/EN 15804 + A2:2019 - "Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products"

EN 15942

DS/EN 15942:2011 – " Sustainability of construction works – Environmental product declarations – Communication format business-to-business"

ISO 14025

DS/EN ISO 14025:2010 – " Environmental labels and declarations – Type III environmental declarations – Principles and procedures"

ISO 14040

DS/EN ISO 14040:2008 – " Environmental management – Life cycle assessment – Principles and framework"

ISO 14044

DS/EN ISO 14044:2008 – " Environmental management – Life cycle assessment – Requirements and guidelines"