This appendix refers to the EPD MD-22106-EN, developed according to EN15804+A2:2019.
Results in the appendix communicates LCA results in the format described in EN15804+A1:2013, in order to accommodate a need in the transition period between the two standard revisions. The appendix cannot stand alone, as the reference EPD describes the basis of the assessment.

ENVIRONMENTAL IMPACTS PER VVX							
Parameter	Unit	A1-A3	C1	C2	C3	C4	D
GWP	[$\mathrm{kg} \mathrm{CO}_{2}$-eq.]	1,24E+02	0,00E+00	7,43E-02	5,04E+00	7,11E-01	-2,66E+01
ODP	[kg CFC11-eq.]	1,99E-09	0,00E+00	8,86E-15	3,04E-11	6,27E-14	1,57E-10
AP	[$\mathrm{kg} \mathrm{SO}_{2}$-eq.]	6,68E-01	0,00E+00	6,58E-05	3,04E-03	1,56E-04	-8,52E-02
EP	[$\mathrm{kg} \mathrm{PO}_{4}{ }^{3}$-eq.]	4,38E-02	0,00E+00	1,37E-05	6,25E-04	6,69E-04	-5,70E-03
POCP	[kg ethene-eq.]	8,09E-02	0,00E+00	-2,46E-06	2,33E-04	1,79E-04	-1,05E-02
ADPE	[kg Sb-eq.]	1,43E-02	0,00E+00	7,74E-09	6,55E-07	2,60E-09	-3,42E-04
ADPF	[MJ]	1,62E+03	0,00E+00	9,95E-01	1,58E+01	4,82E-01	$-2,94 \mathrm{E}+02$
Caption	GWP = Global warming potential; ODP = Ozone depletion potential; AP = Acidification potential of soil and water; EP = Eutrophication potential; POCP = Photochemical ozone creation potential; ADPE = Abiotic depletion potential for non fossil resources; ADPF = Abiotic depletion potential for fossil resources						
	The numbers are declared in scientific notation, fx $1,95 \mathrm{E}+02$. This number can also be written as: $1,95^{*} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12^{*} 10^{-11}$ or 0,0000000000112 .						

RESOURCE USE PER VVX							
Parameter	Unit	A1-A3	C1	C2	C3	C4	D
PERE	$[\mathrm{MJ}]$	$4,11 \mathrm{E}+02$	$0,00 \mathrm{E}+00$	$6,97 \mathrm{E}-02$	$2,20 \mathrm{E}+01$	$4,53 \mathrm{E}-02$	$-2,90 \mathrm{E}+01$
PERM	$[\mathrm{MJ}]$	$1,24 \mathrm{E}+02$	$0,00 \mathrm{E}+00$				
PERT	$[\mathrm{MJ}]$	$5,35 \mathrm{E}+02$	$0,00 \mathrm{E}+00$	$6,97 \mathrm{E}-02$	$2,20 \mathrm{E}+01$	$4,53 \mathrm{E}-02$	$-2,90 \mathrm{E}+01$
PENRE	$[\mathrm{MJ}]$	$1,70 \mathrm{E}+03$	$0,00 \mathrm{E}+00$	$1,01 \mathrm{E}+00$	$1,95 \mathrm{E}+01$	$5,00 \mathrm{E}-01$	$-2,96 \mathrm{E}+02$
PENRM	$[\mathrm{MJ]}$	$1,19 \mathrm{E}+02$	$0,00 \mathrm{E}+00$				
PENRT	$[\mathrm{MJ}]$	$1,82 \mathrm{E}+03$	$0,00 \mathrm{E}+00$	$1,01 \mathrm{E}+00$	$1,95 \mathrm{E}+01$	$5,00 \mathrm{E}-01$	$-2,96 \mathrm{E}+02$
SM	$[\mathrm{kg}]$	$1,40 \mathrm{E}+01$	$0,00 \mathrm{E}+00$				
RSF	$[\mathrm{MJ]}$	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
NRSF	$[\mathrm{MJ}]$	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
FW	$[\mathrm{m} 3]$	$1,16 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$8,06 \mathrm{E}-05$	$1,85 \mathrm{E}-02$	$8,00 \mathrm{E}-05$	$-2,73 \mathrm{E}-01$

Caption primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Use of net fresh water
The numbers are declared in scientific notation, $\mathrm{fx} 1,95 \mathrm{E}+02$. This number can also be written as: $1,95^{*} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12 * 10^{-11}$ or 0,0000000000112 .

WASTE CATEGORIES AND OUTPUT FLOWS PER VVX							
Parameter	Unit	A1-A3	C1	C2	C3	C4	D
HWD	[kg]	3,41E-03	0,00E+00	5,35E-12	2,77E-09	6,64E-11	-1,12E-03
NHWD	[kg]	9,13E+00	0,00E+00	1,65E-04	5,13E-01	5,68E-01	1,58E+00
RWD	[kg]	5,89E-02	0,00E+00	1,88E-06	1,42E-03	6,23E-06	-1,56E-03
CRU	[kg]	3,81E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	[kg]	4,34E+00	0,00E+00	0,00E+00	2,56E+01	0,00E+00	0,00E+00
MER	[kg]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,91E+00
EET	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,88E+00
Caption	HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components forre-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermalenergy						
	The numbers are declared in scientific notation, fx 1,95E+02. This number can also be written as: $1,95^{*} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12 * 10^{-11}$ or 0,0000000000112 .						

Checked and approved by

Guangli Du, Aalborg University, BUILD
Third party verifier of MD-22106-EN

EPD Danmark

