This appendix refers to the EPD MD-22107-EN, developed according to EN15804+A2:2019.
Results in the appendix communicates LCA results in the format described in EN15804+A1:2013, in order to accommodate a need in the transition period between the two standard revisions. The appendix cannot stand alone, as the reference EPD describes the basis of the assessment.

ENVIRONMENTAL IMPACTS PER VVX-I-R-FI							
Parameter	Unit	A1-A3	$\mathbf{C 1}$	$\mathbf{C 2}$	$\mathbf{C 3}$	C4	D
GWP	$\left[\mathrm{kg} \mathrm{CO}_{2}\right.$-eq. $]$	$7,32 \mathrm{E}+01$	$0,00 \mathrm{E}+00$	$6,07 \mathrm{E}-02$	$4,21 \mathrm{E}+00$	$5,79 \mathrm{E}-01$	$-2,15 \mathrm{E}+01$
ODP	$[\mathrm{kg} \mathrm{CFC11-eq}]$.	$7,02 \mathrm{E}-10$	$0,00 \mathrm{E}+00$	$7,24 \mathrm{E}-15$	$2,48 \mathrm{E}-11$	$5,11 \mathrm{E}-14$	$-1,66 \mathrm{E}-10$
AP	$\left[\mathrm{kg} \mathrm{SO}_{2}\right.$-eq. $]$	$3,47 \mathrm{E}-01$	$0,00 \mathrm{E}+00$	$5,38 \mathrm{E}-05$	$2,52 \mathrm{E}-03$	$1,27 \mathrm{E}-04$	$-7,00 \mathrm{E}-02$
EP	$\left[\mathrm{kg} \mathrm{PO}_{4}{ }^{3-}-\mathrm{eq}.\right]$	$2,37 \mathrm{E}-02$	$0,00 \mathrm{E}+00$	$1,12 \mathrm{E}-05$	$5,21 \mathrm{E}-04$	$5,44 \mathrm{E}-04$	$-4,55 \mathrm{E}-03$
POCP	$[\mathrm{kg}$ ethene-eq. $]$	$4,94 \mathrm{E}-02$	$0,00 \mathrm{E}+00$	$-2,01 \mathrm{E}-06$	$1,93 \mathrm{E}-04$	$1,46 \mathrm{E}-04$	$-8,63 \mathrm{E}-03$
ADPE	$[\mathrm{kg} \mathrm{Sb-eq}]$.	$7,77 \mathrm{E}-03$	$0,00 \mathrm{E}+00$	$6,32 \mathrm{E}-09$	$5,34 \mathrm{E}-07$	$2,12 \mathrm{E}-09$	$-4,69 \mathrm{E}-04$
ADPF	$[\mathrm{MJ}]$	$9,59 \mathrm{E}+02$	$0,00 \mathrm{E}+00$	$8,13 \mathrm{E}-01$	$1,30 \mathrm{E}+01$	$3,92 \mathrm{E}-01$	$-2,35 \mathrm{E}+02$

Caption
GWP = Global warming potential; ODP = Ozone depletion potential; AP = Acidification potential of soil and water; EP = Eutrophication potential; POCP = Photochemical ozone creation potential; ADPE = Abiotic depletion potential for non fossil resources; ADPF $=$ Abiotic depletion potential for

The numbers are declared in scientific notation $\mathrm{fx} 1,95 \mathrm{E}+02$. Tossil resources $1,12^{*} 10^{-11}$ or 0,0000000000112 .

RESOURCE USE PER VVX-I-R-FI							
Parameter	Unit	A1-A3	C1	C2	C3	C4	D
PERE	$[\mathrm{MJ}]$	$2,72 \mathrm{E}+02$	$0,00 \mathrm{E}+00$	$5,70 \mathrm{E}-02$	$1,80 \mathrm{E}+01$	$3,69 \mathrm{E}-02$	$-2,25 \mathrm{E}+01$
PERM	$[\mathrm{MJ}]$	$8,34 \mathrm{E}+01$	$0,00 \mathrm{E}+00$				
PERT	$[\mathrm{MJ}]$	$3,55 \mathrm{E}+02$	$0,00 \mathrm{E}+00$	$5,70 \mathrm{E}-02$	$1,80 \mathrm{E}+01$	$3,69 \mathrm{E}-02$	$-2,25 \mathrm{E}+01$
PENRE	$[\mathrm{MJ}]$	$9,84 \mathrm{E}+02$	$0,00 \mathrm{E}+00$	$8,25 \mathrm{E}-01$	$1,59 \mathrm{E}+01$	$4,07 \mathrm{E}-01$	$-2,37 \mathrm{E}+02$
PENRM	$[\mathrm{MJ}]$	$7,18 \mathrm{E}+01$	$0,00 \mathrm{E}+00$				
PENRT	$[\mathrm{MJ}]$	$1,06 \mathrm{E}+03$	$0,00 \mathrm{E}+00$	$8,25 \mathrm{E}-01$	$1,59 \mathrm{E}+01$	$4,07 \mathrm{E}-01$	$-2,37 \mathrm{E}+02$
SM	$[\mathrm{kg}]$	$1,12 \mathrm{E}+01$	$0,00 \mathrm{E}+00$				
RSF	$[\mathrm{MJ]}$	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
NRSF	$[\mathrm{MJ}]$	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
FW	$\left[\mathrm{m}^{3}\right]$	$7,58 \mathrm{E}-01$	$0,00 \mathrm{E}+00$	$6,58 \mathrm{E}-05$	$1,53 \mathrm{E}-02$	$6,51 \mathrm{E}-05$	$-2,11 \mathrm{E}-01$

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM =
Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non renewable primary energy resources used as

Caption raw materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; $\mathrm{SM}=$ Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Use of net fresh water
The numbers are declared in scientific notation, $\mathrm{fx} 1,95 \mathrm{E}+02$. This number can also be written as: $1,95 * 10^{2}$ or 195 , while $1,12 \mathrm{E}-$ 11 is the same as $1,12 * 10^{-11}$ or 0,0000000000112 .

WASTE CATEGORIES AND OUTPUT FLOWS PER VVX-I-R-FI							
Parameter	Unit	A1-A3	C1	$\mathbf{C 2}$	$\mathbf{C 3}$	C4	D
HWD	$[\mathrm{kg}]$	$2,39 \mathrm{E}-03$	$0,00 \mathrm{E}+00$	$4,37 \mathrm{E}-12$	$2,27 \mathrm{E}-09$	$5,40 \mathrm{E}-11$	$-8,08 \mathrm{E}-04$
NHWD	$[\mathrm{kg}]$	$6,48 \mathrm{E}+00$	$0,00 \mathrm{E}+00$	$1,34 \mathrm{E}-04$	$4,28 \mathrm{E}-01$	$4,62 \mathrm{E}-01$	$1,45 \mathrm{E}+00$
RWD	$[\mathrm{kg}]$	$3,27 \mathrm{E}-02$	$0,00 \mathrm{E}+00$	$1,53 \mathrm{E}-06$	$1,16 \mathrm{E}-03$	$5,07 \mathrm{E}-06$	$-1,22 \mathrm{E}-03$

CRU	[kg]	2,74E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	[kg]	2,64E+00	0,00E+00	0,00E+00	2,09E+01	0,00E+00	0,00E+00
MER	[kg]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	$3,22 \mathrm{E}+00$
EET	[MJ]	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,68E+00
Caption	$\begin{aligned} & \text { HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for } \\ & \text { re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal } \end{aligned}$ energy						
	The numbers are declared in scientific notation, fx $1,95 \mathrm{E}+02$. This number can also be written as: $1,95^{*} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12 * 10^{-11}$ or 0,0000000000112 .						

Checked and approved by

Guangli Du, Aalborg University, BUILD
Third party verifier of MD-22107-EN

